- Being a GATE aspirant, it is very important that you first know what is the syllabus for GATE Mechanical (ME) Examination before you start preparation.
- Keep handy the updated copy of GATE Mechanical (ME) Examination syllabus.
- Go through the complete and updated syllabus, highlight important subjects and topics based on Past GATE Mechanical (ME) Papers and Weightage plus your understanding of particular subject or topic.
- Keep tracking and prioritising your preparation-to-do list and the syllabus for the GATE Mechanical (ME) examination.

## GATE 2018 Mechanical (ME) Syllabus

#### Section I: Engineering Mathematics

##### Linear Algebra:

Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.

##### Calculus:

Functions of single variable, limit, continuity and differentiability, mean value theorems, indeterminate forms; evaluation of definite and improper integrals; double and triple integrals; partial derivatives, total derivative, Taylor series (in one and two variables), maxima and minima, Fourier series; gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals, applications of Gauss, Stokes and Greens theorems.

##### Differential equations:

First order equations (linear and nonlinear); higher order linear differential equations with constant coefficients; Euler-Cauchy equation; initial and boundary value problems; Laplace transforms; solutions of heat, wave and Laplace’s equations.

##### Complex variables:

Analytic functions; Cauchy-Riemann equations; Cauchys integral theorem and integral formula; Taylor and Laurent series.Matrix algebra, systems of linear equations, eigenvalues and eigenvectors.

##### Probability and Statistics:

Definitions of probability, sampling theorems, conditional probability; mean, median, mode and standard deviation; random variables, binomial, Poisson and normal distributions.

##### Numerical Methods:

Numerical solutions of linear and non-linear algebraic equations; integration by trapezoidal and Simpsons rules; single and multi-step methods for differential equations.

#### Section II: Applied Mechanics and Design

##### Engineering Mechanics:

Free-body diagrams and equilibrium; trusses and frames; virtual work; kinematics and dynamics of particles and of rigid bodies in plane motion; impulse and momentum (linear and angular) and energy formulations, collisions.

##### Mechanics of Materials:

Stress and strain, elastic constants, Poisson’s ratio; Mohrs circle for plane stress and plane strain; thin cylinders; shear force and bending moment diagrams; bending and shear stresses; deflection of beams; torsion of circular shafts; Eulers theory of columns; energy methods; thermal stresses; strain gauges and rosettes; testing of materials with universal testing machine; testing of hardness and impact strength.

##### Theory of Machines:

Displacement, velocity and acceleration analysis of plane mechanisms; dynamic analysis of linkages; cams; gears and gear trains; flywheels and governors; balancing of reciprocating and rotating masses; gyroscope.

##### Vibrations:

Free and forced vibration of single degree of freedom systems, effect of damping; vibration isolation; resonance; critical speeds of shafts.

##### Machine Design:

Design for static and dynamic loading; failure theories; fatigue strength and the S-N diagram; principles of the design of machine elements such as bolted, riveted and welded joints; shafts, gears, rolling and sliding contact bearings, brakes and clutches, springs.

#### Section III: Fluid Mechanics and Thermal Sciences

##### Fluid Mechanics:

Fluid properties; fluid statics, manometry, buoyancy, forces on submerged bodies, stability of floating bodies; control-volume analysis of mass, momentum and energy; fluid acceleration; differential equations of continuity and momentum; Bernoullis equation; dimensional analysis; viscous flow of incompressible fluids, boundary layer, elementary turbulent flow, flow through pipes, head losses in pipes, bends and fittings.

##### Heat-Transfer:

Modes of heat transfer; one dimensional heat conduction, resistance concept and electrical analogy, heat transfer through fins; unsteady heat conduction, lumped parameter system, Heisler’s charts; thermal boundary layer, dimensionless parameters in free and forced convective heat transfer, heat transfer correlations for flow over flat plates and through pipes, effect of turbulence; heat exchanger performance, LMTD and NTU methods; radiative heat transfer, Stefan-Boltzmann law, Wien’s displacement law, black and grey surfaces, view factors, radiation network analysis.

##### Thermodynamics:

Thermodynamic systems and processes; properties of pure substances, behaviour of ideal and real gases; zeroth and first laws of thermodynamics, calculation of work and heat in various processes; second law of thermodynamics; thermodynamic property charts and tables, availability and irreversibility; thermodynamic relations.

##### Applications:

Power Engineering: Air and gas compressors; vapour and gas power cycles, concepts of regeneration and reheat. I.C. Engines: Air-standard Otto, Diesel and dual cycles. Refrigeration and air-conditioning: Vapour and gas refrigeration and heat pump cycles; properties of moist air, psychrometric chart, basic psychrometric processes. Turbomachinery: Impulse and reaction principles, velocity diagrams, Pelton-wheel, Francis and Kaplan turbines.

#### Section IV: Materials, Manufacturing and Industrial Engineering

##### Engineering Materials:

Structure and properties of engineering materials, phase diagrams, heat treatment, stress-strain diagrams for engineering materials.

##### Casting, Forming and Joining Processes:

Different types of castings, design of patterns, moulds and cores; solidification and cooling; riser and gating design. Plastic deformation and yield criteria; fundamentals of hot and cold working processes; load estimation for bulk (forging, rolling, extrusion, drawing) and sheet (shearing, deep drawing, bending) metal forming processes; principles of powder metallurgy. Principles of welding, brazing, soldering and adhesive bonding.

##### Machining and Machine Tool Operations:

Mechanics of machining; basic machine tools; single and multi-point cutting tools, tool geometry and materials, tool life and wear; economics of machining; principles of non-traditional machining processes; principles of work holding, design of jigs and fixtures.

##### Metrology and Inspection:

Limits, fits and tolerances; linear and angular measurements; comparators; gauge design; interferometry; form and finish measurement; alignment and testing methods; tolerance analysis in manufacturing and assembly.

##### Computer Integrated Manufacturing:

Basic concepts of CAD/CAM and their integration tools.

##### Production Planning and Control:

Forecasting models, aggregate production planning, scheduling, materials requirement planning.

##### Inventory Control:

Deterministic models; safety stock inventory control systems.

##### Operations Research:

Linear programming, simplex method, transportation, assignment, network flow models, simple queuing models, PERT and CPM.