Being a GATE aspirant, it is very important to first know what is the syllabus for GATE Metallurgy Examination before you start the preparation. Go through the complete and updated syllabus for GATE Metallurgy 2023. Make sure to highlight important subjects and topics based on previous year’s GATE Metallurgy question papers.

GATE syllabus for Metallurgy (MT)

Candidates who want to get a good score in the GATE examinations can download the GATE Metallurgical Engineering (MT) Syllabus for GATE 2023 in the form of a PDF or refer to the webpage below:


Section name Topics
1. Engineering Mathematics Linear Algebra: Matrices and Determinants, Systems of linear equations, Eigen values, and Eigen vectors.

Calculus: Limit, Continuity, and Differentiability; Partial derivatives; Maxima and minima; Sequences and series; Test for convergence; Fourier series.

Vector Calculus: Gradient; Divergence and Curl; Line, Surface and volume integrals; Stokes, Gauss, and Green’s theorems.

Differential Equations: Linear and non-linear first order ODEs; Higher order linear ODEs with constant coefficients; Cauchy’s and Euler’s equations; Laplace transforms; PDEs –Laplace, one-dimensional heat and wave equations.

Probability and Statistics: Definitions of probability and sampling theorems, conditional probability, Mean, median, mode, and standard deviation; Random variables; Poisson, normal and binomial distributions; Analysis of experimental data; linear least-squares method.

Numerical Methods: Solutions of linear and non-linear (Bisection, Secant, Newton- Raphson methods) algebraic equations; integration by trapezoidal and Simpson’s rule; single and multi-step methods for differential equations.

2. Metallurgical Thermodynamics Laws of thermodynamics: First law – energy conservation, Second law – entropy; Enthalpy, Gibbs and Helmholtz free energy; Maxwell’s relations; Chemical potential; Applications to metallurgical systems, solutions, ideal and regular solutions; Gibbs phase rule, phase equilibria, binary phase diagram, and lever rule, free-energy vs. composition diagrams; Equilibrium constant, Activity, Ellingham and phase stability diagrams; Thermodynamics of point defects, surfaces, and interfaces, adsorption and segregation phenomena.

Electrochemistry: Single electrode potential, Electrochemical cells, Nernst equation, Potential-pH diagrams.

3. Transport Phenomena and Rate Processes Momentum transfer: Concept of viscosity, shell balances, Bernoulli’s equation, mechanical energy balance equation, flow past plane surfaces and through pipes.

Heat transfer:

  • Conduction: Fourier’s Law, 1-D steady-state conduction.
  • Convection: Heat transfer coefficient relations for forced convection.
  • Radiation: Black body radiation, Stefan-Boltzmann Law, Kirchhoff’s Law.

Mass transfer: Diffusion and Fick’s laws, mass transfer coefficients.

Dimensional analysis: Buckingham Pi theorem, Significance of dimensionless numbers.

Basic laws of chemical kinetics: First order reactions, the reaction rate constant, Arrhenius relation, heterogeneous reactions, oxidation kinetics.

Electrochemical kinetics: Polarization.

4. Mineral Processing and Extractive Metallurgy Comminution techniques, Size classification, Flotation, Gravity, and other methods of mineral beneficiation; Agglomeration: sintering, pelletizing, and briquetting.

Material and Energy balances in metallurgical processes; Principles and processes for the extraction of non-ferrous metals – aluminum, copper, and titanium.

Iron and steel making: Material and heat balance in blast furnace; Structure and properties of slags and molten salts – basicity of slags – sulphide and phosphate capacity of slags; Production of metallurgical coke. Other methods of iron making (COREX, MIDREX).

Primary steelmaking: Basic oxygen furnace, process dynamics, oxidation reactions, electric arc furnace.

Secondary steelmaking: Ladle process – deoxidation, argon stirring, desulphurization, inclusion shape control, principles of degassing methods; Basics of stainless-steel manufacturing.

Continuous Casting: Fluid flow in the tundish and mould, heat transfer in the mould, segregation

5. Physical Metallurgy Chemical Bonding: Ionic, covalent, metallic, and secondary bonding in materials, Crystal structure of solids – metals and alloys, ionic and covalent solids, and polymers.

X-ray Diffraction – Bragg’s law, optical metallography, principles of SEM imaging.

Crystal Imperfections: Point, line, and surface defects; Coherent, semi-coherent, and incoherent interfaces.

Diffusion in solids: Diffusion equation, steady-state and error function solutions; Example: homogenization and carburization; Kirkendall effect; Uphill diffusion; Atomic models for interstitial and substitutional diffusion; Pipe diffusion and grain boundary diffusion.

Phase transformation: Driving force, Homogeneous and heterogeneous nucleation, growth Kinetics Solidification in isomorphous, eutectic and peritectic systems, cast structures and macrosegregation, dendritic solidification and constitutional supercooling, coring and microsegregation.

Solid-state transformations: Precipitation, spinodal decomposition, ordering, massive transformation, discontinuous precipitation, eutectoid transformation, diffusionless transformations; Precipitate coarsening, Gibbs-Thomson effect.

Principles of heat treatment of steels, TTT and CCT diagrams; Surface hardening treatments; Recovery, recrystallization, and grain growth; Heat treatment of cast iron and aluminium alloys.

Electronic, magnetic, and optical properties of materials.

Basic forms of corrosion and its prevention

6. Mechanical Metallurgy

Strain tensor and stress tensor, Representation by Mohr’s circle, elasticity, stiffness and compliance tensor, Yield criteria, Plastic deformation by slip and twinning.

Dislocation theory: Edge, screw, and mixed dislocations, source and multiplication of dislocations, stress fields around dislocations; Partial dislocations, dislocation interactions, and reactions.

Strengthening mechanisms: Work/strain hardening, strengthening due to grain boundaries, solid solution, precipitation, and dispersion.

Fracture behavior, Griffith theory, linear elastic fracture mechanics, fracture toughness, fractography, ductile to brittle transition.

Fatigue: Cyclic stress-strain behaviour – low and high cycle fatigue, crack growth. Mechanisms of high-temperature deformation and failure; creep and stress rupture, stress exponent, and activation energy.

7. Manufacturing Processes Metal casting: Mould design involving feeding, gating, and risering, casting practices, casting defects.

Hot, warm, and cold working of metals: Metal forming – fundamentals of metal forming processes of rolling, forging, extrusion, wire drawing, and sheet metal forming, defects in forming.

Metal joining: Principles of soldering, brazing and welding, welding metallurgy, defects in welded joints in steels and aluminum alloys.

Powder metallurgy: production of powders, compaction, and sintering.

Non-destructive Testing (NDT): Dye-penetrant, ultrasonic, radiography, eddy current, acoustic emission, and magnetic particle inspection methods.

Quick links:

Know how to prepare for GATE Metallurgy 2023

GATE 2023 Metallurgy (MT) Useful Links

(You might be interested in GATE 2023 Metallurgy (MT) useful links given below.)

GATE 2023 Useful Links I

GATE 2023 Useful Links II

How to prepare for GATE 2023? Information About GATE 2023
Useful Tips on GATE 2023 GATE Cut-Offs
What is GATE? Why GATE Exam?
Are NPTEL Metallurgy (MT) Videos Useful? Best Online Coaching For GATE Metallurgy (MT) In India
Best Study Material For GATE Metallurgy (MT) In India Best Test Series For GATE Metallurgy (MT) In India
Best Video Lectures For GATE Metallurgy (MT) In India Free GATE Metallurgy (MT) Preparation Resources
GATE Metallurgy (MT) Scoring System How to prepare for GATE Metallurgy 2023?
How Should I Start My GATE Metallurgy (MT) Preparation? Past GATE Metallurgy (MT) Question Papers and Solutions/Answers with Explanations
Strategy To Prepare For GATE Metallurgy (MT) Exam Tips To Crack GATE Metallurgy (MT) Exam
What is Metallurgy (MT) GATE Exam Pattern? What Is The Syllabus For Metallurgy (MT) GATE Examination?
When Should I Start Preparation For GATE Metallurgy (MT)? Which Are The Best Books To Prepare For GATE Metallurgy (MT) Examination?
Which Are The Best GATE Metallurgy (MT) Classes In India?
Open chat
Message Us on 9930406349 for any help
Hi, How can I help you?
Do you want to know more about What is the syllabus for GATE Metallurgy 2023??
Call Now Button